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APPENDIX B Time Advancement

For a nondeforming mesh, Equation (A-1) can be written as

(B-1)

where

(B-2)

The time term can be discretized with backward differencing:

(B-3)

where the superscripts indicate time level. When  the method is first-order tempo-
rally accurate; when  the method is second-order accurate. This equation is
implicit because the right-hand side is a function of the unknown flow variables at time
level .

The CFL3D code is advanced in time with an implicit approximate-factorization
method. The implicit derivatives are written as spatially first-order accurate, which results
in block-tridiagonal inversions for each sweep. However, for solutions that utilize FDS the
block-tridiagonal inversions are usually further simplified with a diagonal algorithm (with
a spectral radius scaling of the viscous terms).

Because of the method which the left-hand side is treated for computational efficiency
in steady-state simulations (approximate factorization, first-order accuracy), second-order
temporal accuracy is forfeited for unsteady computations. One method for recovering the
desired accuracy is through the use of sub-iterations. Two different sub-iteration strategies
have been implemented in CFL3D. The first method is termed “pseudo time sub-iteration
( -TS)”. The method is also often referred to as the “dual time stepping” method. The
other method, termed “physical time sub-iteration ( -TS),” follows Pulliam.28

For the -TS method, a pseudo time term is added to the time-accurate Navier-Stokes
equations.
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(B-4)

 This equation is then discretized and iterated in , where  is the sub-iteration counter.

(B-5)

In Equation (B-5),  and  govern the order of accuracy of the physical and pseudo
time terms, respectively. In practice, the pseudo time term is treated as first order (i.e.,

), but the general form is shown here for completeness. As , the pseudo time

term vanishes if the sub-iterations converge and . If  is linearized with

(B-6)

and the quantity  is added to both sides of Equation (B-5)), then Equa-
tion (B-5) becomes

(B-7)

where

(B-8)

(B-9)

(B-10)

(B-11)

Equation (B-7) is approximately factored and written in primitive variable form; it is
solved as a series of sweeps in each coordinate direction as
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(B-12)

(B-13)

(B-14)

(B-15)

where the primitive variables are

(B-16)

(B-17)

(B-18)

(B-19)

(B-20)

The quantity  is based on a constant CFL number set by the input parameter cfl_tau

(See “LT5 - Time Step Parameters” on page 21). Multigrid is used to drive  to zero in
a reasonable number of sub-iterations.

In the t-TS method, Equation (B-3) is merely iterated in , where  is the sub-itera-
tion counter:
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(B-21)

The quantity  is added to both sides, the residual is linearized, and the
equation is approximately factored and written in primitive variable form as

(B-22)

(B-23)

(B-24)

(B-25)

As , . When only one series of sweeps is performed,  and
the standard time-accurate CFL3D scheme is recovered (i.e., no sub-iterations). Unlike the

-TS method, this sub-iteration procedure (Equation (B-22) through Equation (B-25)) uti-
lizes only one time step: the physical time step  (= constant).

Prior to the execution of Equation (B-25) in the code, the corrections are constrained
in order to maintain the positivity of the thermodynamic variables  and . For example,
the update to pressure is taken as

(B-26)

whenever . Currently,  and .

In the limit of , . This modification improves the robust-
ness of the method by allowing it to proceed through local transients encountered during
the convergence process which would otherwise terminate the calculation.

When running steady-state computations (dt < 0), the time step advanced locally in
each cell is related to the input CFL number by

(B-27)
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where

(B-28)

where , ,  and , , and  are defined in
Equation (A-7) in Appendix A. The viscous scaling terms (the last term in each equation
of Equation (B-28)) are only used when the solution includes viscous terms. They arise
from a spectral radius scaling (see Coakley14).
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